Toán học - học mà chơi

Giai thừa với bài toán tổ hợp

Chủ Nhật 07:25 19/08/2012
(HNM) - Số đếm được hình thành từ xa xưa trong lịch sử. Khi toán học phát triển, một số nhà toán học khi làm toán lại quan tâm đến tích của những số đếm đầu tiên như 1 x 2, 1 x 2 x 3... Người ta gọi tích của n số đếm đầu tiên là n giai thừa, kí hiệu là n!. Chẳng hạn, 2! = 1 x 2 = 2, 3! = 1 x 2 x 3 = 6.

Những nhà toán học nổi tiếng như Legendre, Gauss, James Stirling, Vandermonde... sử dụng cách viết 1 x 2 x 3 x 4... trong các định lí hay công thức toán học của mình. Người đầu tiên dùng kí hiệu n! là nhà toán học người Pháp Christian Kramp (1760-1826) vào năm 1808. Ông tốt nghiệp ngành y khoa nhưng lại quan tâm nhiều đến toán học. Ông đã viết một số sách về y khoa và đến năm 1793 thì xuất bản sách viết về tinh thể học. Năm 1794, Kramp trở thành giảng viên dạy toán, lý, hóa. Năm 1809, ông được bổ nhiệm làm giáo sư. 8 năm sau, ông được bầu vào Viện Hàn lâm khoa học Pháp. Việc đưa kí hiệu n! vào giúp cho mọi người giảm đáng kể thời gian công sức, góp phần đáng kể vào sự phát triển của toán học.

Dựa vào khái niệm giai thừa, ta thấy (n + 1)! = (n + 1) x n!. Chẳng hạn với n = 4 thì 5! = 5 x 4!. Thật vậy, 5! = 1 x 2 x 3 x 4 x 5, còn 5 x 4! = 5 x (1 x 2 x 3 x 4). Do đó 5! = 5 x 4!. Người ta gọi (n + 1)! = (n + 1) x n! là một công thức truy hồi. Muốn tính giai thừa của một số, ta tính theo giai thừa của số bé hơn. Biết 4! = 24, muốn tính 6!, ta có thể làm như sau: 5! = 5 x 4! = 5 x 24 = 120, 6! = 6 x 5! = 6 x 120 = 720.

Công thức giai thừa xuất hiện nhiều trong toán như hoán vị, tổ hợp, chỉnh hợp, lý thuyết số, giới hạn, số nguyên tố hay những khai triển toán học theo các chuỗi số... Chẳng hạn số cách xếp hàng ngang 3 bạn để chụp ảnh gọi là một hoán vị của 3, chính là 3! = 6. Ví dụ với 3 bạn A, B, C thì 6 cách xếp hàng đó là ABC, ACB, BAC, BCA, CAB, CBA. Với ngôi sao 5 cánh thì số đoạn thẳng nối 2 điểm được gọi là một tổ hợp 2 của 5. Công thức tính là 5! : (2! x (5 - 2)!) hay 5! : (2! x 3!) = 120 : (2 x 6) = 120 : 12 = 10. Em hãy vẽ thử xem nhé. Ở một số loại máy tính cầm tay, người ta viết phím nCk để chỉ tổ hợp k của n. Với bài toán ngôi sao này thì đó là 5C2. Ta có thể tính 5C2 theo cách liệt kê: Chọn 5 điểm A, B, C, D, E và đếm số đoạn thẳng là AB, AC, AD, AE, BC, BD, BE, CD, CE, DE. Ta vẫn được đáp số là 10 đoạn thẳng.

Bây giờ ta giải thích tại sao phải có kí hiệu 0! và 1!. Theo khái niệm ở trên thì n! chỉ tích của n số đếm đầu tiên. Theo công thức truy hồi thì 2! = 2 x 1! hay 2 = 2 x 1!, từ đó 1! = 1. Đến bài toán tổ hợp, chẳng hạn tính số đoạn thẳng nối 2 điểm. Đáp số rõ ràng là 1. Tức là 2C2 = 1 hay 2! : (2! x (2 - 2)!) = 1. Từ đó 2 : (2 x 0!) = 1, 2 x 0! = 2, 0! = 1. Vậy để đầy đủ các khái niệm giai thừa cho các số tự nhiên, người ta quy ước 0! = 1! = 1.

Kết quả kỳ trước. Trong hình vuông 3 x 3 có tất cả 36 hình chữ nhật. Phần thưởng trao cho các bạn: Phương Minh Tuấn (7B, THCS Tân Mai); Trần Nhật Huy (7A7, THCS Ngô Sĩ Liên); Phạm Trần Duy Hưng, Phạm Trần Quang Nguyên (P506, C2, TT Quỳnh Mai).

Câu hỏi kỳ này: Nối các đỉnh của hình vuông được 6 đoạn thẳng. Theo em thì dùng công thức nào để tính? Câu trả lời gửi về chuyên mục "Toán học, học mà chơi", Tòa soạn Báo Hànộimới, 44 Lê Thái Tổ, Hoàn Kiếm, Hà Nội.

Ý kiến bạn đọc: 1
Loading.....
Gửi bình luận của bạn



Tin tức mới hơn

Tin tức khác

Cần có cơ sở khoa học rõ ràng

(HNM) - Kế hoạch xây dựng phương án điều chỉnh mức lương tối thiểu vùng năm 2016 của Hội đồng Tiền lương quốc gia đang thu hút sự quan tâm của dư luận.  

Tinh thần Tuyên ngôn Độc lập trường tồn cùng dân tộc!

(HNM) - Tuyên ngôn Độc lập 70 năm trước đánh dấu sự biến đổi chính trị - lịch sử to lớn, chưa từng có trong tiến trình lịch sử Việt Nam và là kết quả cuộc đấu tranh không sợ hy sinh để giành độc lập dân tộc.

Sự xâm hại các dòng sông đến hồi báo động!

(HNM) - Việc khai thác tiềm năng các dòng sông ở nước ta đã đến giới hạn và nhiều nơi ở mức nguy hiểm; phát triển kinh tế quá "nóng" cũng để lại nhiều hệ lụy cho các dòng sông… là những vấn đề đang đặt ra hiện nay.

Họ là đồng đội

(HNM) - Sáng 26-8, những người đang lưu thông trên đường Phạm Ngọc Thạch (Hà Nội) không mấy ai để ý đến chiếc xe du lịch biển 80B tách khỏi đám đông, từ từ nép vào vỉa hè trước cầu thang số 1 Nhà B1, Khu tập thể Trung Tự.